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Executive Summary

This report describes the results of applying a new numerical simulation technique
to the problem of scattering from subsurface bubble clouds generated by spilling or
breaking waves. To the extent that these bubble clouds can be modeled by homogeneous
voids or weakly permeable objects, the scattering characteristics are amenable to exact
analysis by our method. The results extend previous work in which we developed

* numerical simulation techniques to compute detailed scattering characteristics of ocean-
surface realizations that preserve the essential hydrodynamic nonlinearities. It is known
that at high sea states the measured surface reverberation noise cannot be explained
by surface scatter alone, and subsurface bubble clouds have been hypothesized as the
source of the enhanced backscatter. In its simplest form, the model invokes a meter-
sized impermeable object, which can have a low-frequency acoustic backscatter cross
section that is-more than 30 dB higher than the corresponding surface backscatter
level at high sea states. The proximity of the highly irregular surface that spawned
the bubble cloud, however, can significantly alter the scattering characteristics of the
bubble in isolation.

The bubble scattering problem is solved herein as a special case of a more general
* formulation we developed for calculating the multiple scattering from a collection of

objects whose free-space scattering characteristics are known. Each scatterer is con-
fined to a region bounded by a pair of planes over which the total scattered fields are
characterized by their spatial two-dimensional Fourier spectra. At each boundary plane
these wave fields see only the two adjacent scatterers. If there are only two scatterers,
the interaction equations for the coupled Fourier modes can be solved as a system of
linear equations. The technique is sufficiently general that one of the particles can be
replaced by a plane or rough surface. Thus, the mutual interaction between an object
and a rough surface can be solved in terms of the known scattering functions for the
surface and the particle. For the ocean surface, we use our previously developed nu-
merical method to calculate the surface scattering function. At the present time, the

* bubble cloud is modeled by a simple geometrical shape whose scattering characteristics
are known. More refined bubble scattering models can be incorporated as they are
developed.

Our simulations are presently restricted to two dimensions. This constraint comes
mainly from the need to characterize ocean surface scatter at high sea states. No

* currently available computational method gives the two-dimensional surface scatter-
ing function with sufficient accuracy to perform the mutual-interaction computations. n Frt

However, both cylinders and spheres near plane impenetrable surfaces can be solved by 1kI-
the mutual-interaction method. Indeed, for small objects that scatter isotropically, the
mutual-interaction equations admit algebraic solutions. NWe find that as a small scatter-

,Lion
ing object is moved away from a plane impenetrable surface, the backscatter coefficient.
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which is initially suppressed to the surface backscatter value if the roughness is small,
increases very rapidly to its free-space value and then exceeds that value by at least 12 0

dB before it peaks. Thus, a small object in close proximity to an impenetrable surface
can display very rapid changes in its overall scatter coefficient, and large enhancements
over the free backscatter coefficient can be achieved. The backscatter enhancement is
generally maximized for isotropic scatterers. The exact solutions for meter-sized objects
show peak enhancements 2 to 7 dB lower than the isotropic value depending on the 0
incidence angle.

While the plane surface and/or isotropic results are useful for illustrating some key
features of the scattering interaction, they do not admit a direct dependence on sea-
state. Acoustic scatter data show that the onset of anomalous surface backscatter occurs
at a wind speed of approximately 20 knots. Our simulations show that at 20 knots the
scattering characteristics are qualitatively similar to those of a plane reflecting surface,
but at the depth of the deepest wave trough the 600 backscatter enhancement is already
near its peak level. At 30 knots there are significant differences between the flat and
rough-surface models, but the lobing pattern with increasing distance persists. As the
wind speed is increased further, the characteristic interference patterns may disappear
altogether. In all cases, however, at high sea states (at or above 15 knots), the prcsence 0
of a meter-sized void acts to substantially enhance the low-frequency acoustic surface
reverberation noise at the level of the the deepest wave trough.

The mutual interaction method presently does not allow the bubble cloud and the
surface to overlap. Thus, the bubble cloud must be at or below the depth of the
deepest trough in the surface realization. Somewhat fortuitously, this feature provides 0
a qualitative explanation of the wind-speed dependence of the Chapman-Harris curves.
The bubble backscatter coefficient at a distance corresponding to the deepest wave
trough has the correct incidence-angle dependence, but it rises too steeply for a fixed
bubble size independent of wind speed. The present bubble model does not include
dynamic or wind-speed dependent characteristics. Thus, we have not computed the
Doppler spectrum because the static model will automatically concentrate the excess 0
backscattered intensity near zero Doppler shift. It is more appropriate to perform the
more expensive Doppler computations when bubble dynamics can be included.

The main purpose of this report is to provic .horough expos6 of the mutual-
interaction method. The preliminary results do nC. " establish all the details of the
backscatter enhancement caused by subsurface bubbi, clouds, but the missing features
can be incorporated as the bubble-cloud dynamics and wind-speed dependence are bet-
ter understood. The rationale for the bubble model is reviewed in Section I. Section II
presents some background material, including cross section definitions. In Section 111.1
the theory is developed in its most general vector form and then specialized to the scalar
problem of interest here. Because the scattering interacti'ns are exact, it is iiecessary

• . , i i I I



to accommodate evanescent waves. Analytic continuation is used to extend the usual
* definition of the scattering functions, but the necessary results, which are not readily

available in papers or text books, are developed in the appendix. The formulation that
is used for numerical computation is summarized in Section 111.2. Illustrative examples
are presented in Section 111.3, where two-cylinder results are compared to computations
performed with full method of moments. Comparisons are also made with analytic for-
mulas valid for isotropic scatterers.

Our preliminary results for ocean surfaces are presented in Section IV. Conclusions
and recommendations are presented in Section V. An overview of the report can be
obtained by reading Sections I and V.
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I Introduction

In a previous report [1] we described numerical simulations of acoustic and electromag-
netic (EM) scatter from evolving nonlinear ocean-surface realizations. The work was
undertaken to verify and extend theories that attempt to explain acoustic scatter from
ocean surfaces. Of particular interest is an anomalous enhanced baclkscatter component

* observed at high sea states. Because ocean surfaces comprise a power-law continuum
of spatial wave number components, neither the small perturbation theory of rough
surfaces nor the Kirchoff approximation can be used to predict the characteristics of
scattered wave fields. The two-scale model for rough-surface scattering effectively com-
bines these two approximations; however, it is not entirely satisfactory because the
two-scale partitioning and the subsequent analysis of the scattering regimes are ad hoc.

• More recent theoretical work based on higher-order perturbation theory [2] and a T-
matrix approach [3] has largely removed the immediate problems with the two-scale
model, and a well-founded theory has emerged that is applicable to the wavelengths
and sea states relevant to the anomalous acoustic backscatter phenomenon. In prin-
ciple, the new theory can accommodate nonlinear hydrodynamics and will ultimately

* yield average Doppler spectra, but this has not yet been achieved.

Our previous work demonstrated that practical schemes exist for generating sur-
face realizations that accommodate the dominant nonlinear surface hydrodynamics.
Numerical simulations that use these realizations as inputs are effectively computer
experiments, whereby any characteristic of the scattered signal, such as its Doppler
spectrum, is readily computed. At the present time, however, computation and stor-
age requirements restrict the diffraction computations to two dimensions. That is, the
surface height can vary in only one direction. This restricts the fidelity of the surface
hydrodynamic and scattering phenomena that can be modeled, but the two-dimensional
simulations can be used effectively to test hypotheses and to guide experiment planning.
Thus, to generate timely intermediate results, we have extended our two-dimensional

• simulations to accommodate near-surface bubble clouds, which have been hypothesized
to explain the anomalous acoustic backscatter.

From first-order perturbation theory, it follows that the acoustic surface backscatter
level is proportional to the spatial wave number spectrum of the surface-height fluc-
tuations evaluated at the Bragg wave number, which is given as k6 = 2k sin Oi, where
k = 2ir/A, A is the wavelength of the acoustic signal, and Oi is the incidence angle. For
a simple spectral model, for example, the Phillips and Moskowitz spectrum discussed in
Section IV of [1], the Bragg level saturates at a threshold wind speed. The more detailed
scatter calculations predict a nearly linear increase in the logarithm of the backscatter
cross section with wind speed. The excess backscatter over the Bragg level is attributed
to large-scale tilts upon which the Bragg carpet lies. Ocean-surface scatter measured
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Figure 1: Comparison of first-order perturbation theory with 130-Hz acoustic backscat-
ter data.

with microwave radars is generally in agreement with these predictions, but at high
wind speeds the acoustic backscatter cross section increases more nearly as the fourth
power of wind speed. When this anomalous backscatter occurs, the Doppler spectra
show a pronounced enhancement near zero Doppler shift. 0

Figure 1 shows the 130-Hz Bragg acoustic backscatter level at 700 and 800 incidence
angles as predicted by first-order perturbation theory with the Donelan-Pierson spectral
model for an upwind propagation direction. The two curves marked CH-70 and CH-
80 are derived from analytic approximations to the Chapman-Harris curves [4], which
are commonly used to estimate the acoustic surface reverberation noise. As noted
above, more detailed calculations give higher surface backscatter levels, but for winds
above approximately 20 knots, surface roughness alone cannot account for the observed
scatter levels. Because of the wind-speed dependence, it has been hypothesized that the
anomalous backscatter is caused by subsurface bubble clouds generated by breaking or
spilling waves.
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The support for this hypothesis has been summarized by Ellinthorpe [5]. From
* laboratory measurements by Baldy [61, we know that breaking waves generate clouds of

small bubbles in which the largest-size constituents extend to a depth of approximately
one half the rms wave height of the breaking waves. Below this depth there is a sharp
cutoff, and only very small bubbles survive. If we use significant wave height as deduced
from the Pierson-Neumann theory in place of the rms wave height, the cloud of larger
bubbles extends to the depth

dmax :Z 1.5 X 10-12()

where U is the wind speed in meters per second (cf. Chapter 8.3 of Kinsman [7]). Baldy
also observed that the bubbles tend to occur in clusters or clouds at one per dominant

* wave period, with a definite position relative to the wave phase. If we use the peak of
the Pierson-Moskowitz spectrum as a measure of the dominant wavelength, the bubble
clouds should have a lateral dimension bounded by

Imax < U2/(lOg), (2)

where g is the acceleration due to gravity. From 119-kHz surface acoustic backscatter
measurements in deep ocean, Crawford and Farmer [8] deduced plume-like clouds of
bubbles that support the general features of Baldy's laboratory measurements.

The structure and dynamics of subsurface bubble clouds are poorly understood, but
we can deduce likely scattering characteristics. In a sparse distribution of scatterers,
the coherent wave field propagates with the effective wave number

2w"
kff - k + - <f(ai, a)> , (3)

k

where f(a,, a1 ) is the complex scattering function for the particle, and the angle brackets
denote an ensemble average over the particle attributes-mainly size [9]. For a small

• bubble the scattering is nearly isotropic, and it is shown in [91 that

f- aw2

W Q2 +iwr' (4)

where a is the bubble radius, w is the acoustic angular frequency,

= a3pc /(apwcw) (5)

is the corresponding resonant fiequency, and F is the thermal loss factor. The parame-
ters p and c denote density and speed, respectively, with the subscripts indicating the
medium (air or water). FGr low acoustic frequencies the expected bubble radii are such

3



that w < 0, and thermal losses are negligible. Indeed, the scattering losses as inferred
from the extinction of the coherent wave field are themselves very small, which indi-
cates that sca+' .ring by individual bubbles is not a viable mechanism to account for
anomalous scatter.

On the other hand, for frequencies well below Q2, it can be shown from (3), (4), and
(5) that the effective sound speed inside" the bubble cloud is given by the relation

c -_ c..(1 + 8000VF), (6)

where c, is the speed of sound in water and VF is the void fraction. For void fractions
in the expected range 2 x 10- 4 < VF < 2 x 10', the speed discontinuity at an abrupt
boundary can be significant. Thus, to the extent that the bubble clouds have well-
defined boundaries, they can be modeled by homogeneous irregularities with an internal
sound speed given by (6). One finds that the 200-Hz cross section of a meter-sized object
can be - 20 dB higher than the corresponding surface backscatter level at low grazing
angles. For exa..iple, a 1-m cylindrical void has a 200-Hz backscatter cross section of
- -30 dB, whereas the surface backscatter level in consistent units (see Section II) is

less than -40 dB at grazing angles below 200. Allowing for finite permeability does not
change this picture significantly.

Thus, if one accepts a homogeneous void or a weakly permeable object as a rea-
sonable first approximation to a subsurface bubble cloud, the problem becomes one of
determining the scattering characteristics of such an object near an irregular surface.
Although highly idealized, this model can identify the most important characteristics of
scattering by near-surface scattering objects. It is possible to treat this composite scat-
tering problem by generating multiple surface boundary integrals that enclose each ob-
ject; however, this approach is inefficient. For example, a method-of-moments (MOM)
computation of the mutual interaction between two objects of comparable size requires
an eight-fold increase in computation time over that required for a single object. At
Vista Research, Inc., we have developed a novel method that allow.- us to use the known
scattering characteristics of the individual scatterers in an exact calculation of the mu-
tual interaction (multiple scattering) between the two objects. The mutual-interaction
computation requires less time than the computation of the scattering characteristics
of the rough surface itself.

The method is completely general in that it can be used to calculate the mutual
interaction between any pair of scattering objects. To validate the method, we have
performed scatter calculations for pairs of cylinders, a cylinder near a smooth surface,
and a cylinder near a rough surface (Section 111.3). In all cases, we observe backscatter
enhancements in excess of 12 dB over the isolated backscatter level of the single cylinder
as the cylinder is moved away from the second object. The coherent superposition of the
backscatter from two identical objects or an object and its image can account for a 6-dB

4
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enhancement, but there is an additional pair of reciprocal backscatter paths involving
* multiple scatter between the two objects. The enhancement is somewhat larger for a

cylinder adjacent to a planar or rough surface. When the cylinder is in contact with
a plane, the scatter cross section is reduced well below the isolated backscatter level
of the cylinder, as is expected from image theory. Thus, as a particle breaks away
from a surface, there is a very steep rise (; 30 dB over the rough surface level) in the
backscatter cross section.

To the extent that this mechanism is active for bubble clouds generated by breaking
or spilling waves, it clearly supports the bubble-cloud hypothesis as an explanation of
the observed anomalous acoustic backscatter. The large backscatter enhancement asso-
ciated with a scattering object near a reflecting surface is not in itself a new result, but
there are many ramifications of this phenomenon that have not been thoroughly inves-

• tigated. The analytical complexity of the problem has been the principal barrier, but
the new method we have developed reduces the computational burden to a manageable
level.

II Background

A time-honored problem in scattering theory is the computation of the mutual inter-
action among disjoint scattering bodies. Examples of this type of problem that are
important in active acoustics include the interaction of a large transducer array on the
ocean bottom aiid the scatter from near-surface bubble clouds. The problem admits

* a rigorous formulation in terms of multiple surface integrals over the scattering ob-
jects that can be evaluated numerically. This approach, however, makes no use of the
known free-space scattering characteristics of the individual scatterers, and the result-
ing numerical methods are generally inefficient in that the same results can be obtained
with less computation even if the scattering charactcristics of the individual objects are
unknown a priori and must be computed numerically.

Because considerable effort is typically expended to determine the scattering char-
acteristics of complex bodies, it is clearly desirable to use this information when the
scattering characteristics are modified by the presence of terrain, water, or other scat-
tering objects. Traditionally, this multiple-scatter problem has been treated by diagram
methods, which can give good approximations to the average field moments for random

* distributions of large numbers of scatterers, but the basic equations are very difficult to
evaluate exactly. As a simple illustration of the principle involved, recall that standing
acoustic waves in a pipe with discontinuities obey the transmission-line equations as do
waves that obey the more general equations of E.1M the,_,rv. One can solve the standing
wave problem by summing the multiplicity 4 reflected waves, but the tratnsmission-line

S 5



equations are more efficiently solved directly.

It is not widely recognized that essentially the same method can be applied to waves
scattered by multiple objects. The modes on the transmission line are replaced by
spatial Fourier modes propagating forward and backward relative to imaginary planes
separating the objects, which are themselves replaced by scattering planes. A pair of
coupled first-order difference equations that characterize the interaction of the fields
crossing the planes can be solved for the multiply-scattered wave fields crossing the 0
reference planes in terms of the wave-wave scattering functions that formally replace
the objects. Once these fields are known, the backscattered and/or transmitted waves
are easily computed. For a single object pair, the solution is particularly simple. In
effect, an equation of about the same complexity as the equations that characterize
the individual scatterers must be solved. Because the computation time varies with
the cube of the number of unknowns, the direct approach will require (2N)3 , whereas
solving the mutual-interaction equation requires only N' additional computations once
the two scattering functions are known. For m independent objects, the computation
time varies linearly with m versus (mN)3 for the direct method.

The mutual interaction equations are exact to the extent that we have an exact
expression for the wave-wave scattering function for each object. For an incident plane
wave with wave normal vector k±(K'), the dyadic scattering function H.(k+(K), k ± (K'))
characterizes the spectrum of scattered plane-wave components indexed by their wave
normal k (K). The notation emphasizes the fact that each wave vector is constrained
to have amplitude k = 27r/A, where A is the wavelength in the surrounding medium.
Thus, the z component of the wave normal vector is related to the magnitude of the
transverse component K by the relation

k2(K) = +v/kT -- K 2.  (7)

When K > k, (7) is purely imaginary, and the corresponding wave is said to be evanes-
cent. These evanescent waves must be properly accommodated in the dyadic scattering
function. The method of defining the scattering functions over all wave numbers is 0
developed in the appendix. The numerical simulations themselves, which are described
in detail in Section III, yield the two-dimensional Fourier spectrum of the total wave
field near the scattering surfaces. The scattered wave field is the difference between the
total wave field and the wave field that would exist in the absence of scatterers. The
far-zone limit of any propagating wave field is simply related to the two-dimensional
Fourier transform of the corresponding wave field evaluated on a plane near the scatter-
ing object. Thus, all quantities of importance are readily obtained from the numerical
simulations.

It is impractical to perform numerical simulations with incident plane waves for

large objects. To minimize truncation errors fro:m edge disc,-,ntinuities, it is necessary

0



to use a narrow beam. Let Ei(r) represent the field of the beam. In our calculations
we normalize the beam so that the total integrated far-zone intensity is unity. The
normalization factor has the units of length or area. We define the unitless differential
scattering coefficients

-y (k., ki) - riE(r)j2 /(LEji2 ) two-dimensional (8)
' rt[E(r)2 /(AIEi 2) three-dimensional.

Note that -y(k,, ki) is defined in terms of the total wave field and integrates over all
solid angles to unity for a lossless scatterer. These definitions are commonly used
for surface scatter, although the surface cross-sectional area is often used in place of
the cross-sectional area normal to the beam. In [1], we distinguish the differential
scattering coefficient -' from the differential scattering cross section by using the notation
a = -y sin 0j, where 6i is the incidence angle. For particles, however, an unnormalized
cross section with units of area or length is defined in terms of the scattered field for an
incident plane wave. The standard particle cross section integrates to the total scattered
intensity.

The highly dissimilar cross-section measures create a dilemma for data presentation.
* We have chosen to resolve it by retaining the definition (8) for particles as well as sur-

faces. In effect, we illuminate the particle with the same finite beam that necessarily
illuminates the surface. When presented this way, the particle backscatter coefficient is
in units that can be compared directly to the surface scatter coefficient or the cross sec-
tion per unit area if the scattering coefficient is multiplied by the cosine of the incidence

• angle. We develop formulas to convert to particle cross-section units in Section 111.2,
but it should be kept in mind that the ideal plane-wave cross section is a limiting form
that can, in a numerical simulation or a real measurement, only be approached.

Finally, we have developed our analysis in its most general form for vector EM fields.
The scalar wave fields appropriate to the acoustic scatter problem are easily extracted.
Indeed, for pressure release surfaces, the horizontally polarized EM problem and the

S acoustic problem are mathematically identical, as we showed in Appendix A of (11.
One need only interpret the square root of the relative permittivity as a velocity ratio.
The parameters chosen for all our examples were motivated by low-frequency active
acoustics. We take the velocity of sound in sea water as 1500 m/s.

S7



III The Mutual Interaction Method

III.1 Theory

In a recent paper [10], we showed that the mutual interaction among many scattering
objects can be characterized exactly by a pair of vector wave transport equations. This
formulism assumes that the projections of these scatters onto the z axis do not overlap, 0
whereby the medium can be divided into slabs bounded by planes at z = z,. such
that the nth object lies entirely within the slab z,.- 1 < z < z,. Each discrete object is
characterized by a dyadic scattering functions H,(k± , k±), where the first wave normal
vector refers to the scattered wave, the second wave normal vector to the incident wave,
and the sign to the z direction of propagation for real k, or attenuation for imaginary
k.. Each object interacts only with the wave fields that enter the slab containing it. The
exact difference equations for the total wave fields are given by the difference equations

E n-= E 1 exp{ikg(K)Ln} + + __n1 n (9)

and

-= exp{ikg(K)Ln} + fin@E + -n jE _, (10)

where K = IKI is the transverse wave number, L_ = zn - znl- is the width of the slab
containing the nth object, fE:̂ = E+'(K; zn), (i

and and ([1 - K/k 2 ]/ 2  for K < k, 
(12)g(g) = i[K/k -2 1]1/2 otherwise.

The dyadic scattering functions that appear in (9) and (10) are the natural product
of integral equation computation methods. Formally, they represent the spectra of plane
waves scattered by each incident vector plane wave. The operator @ is defined as

+_expikg(g)u} f dK'-X 9J~JJ(2ir)2

×kexp{-i(K- K')p} u (K).Ho(ku (K), k+(K,)) (13)

2g(K)n

• E._,(K') exp{ikg(K')e. }.

The notation Ek_^+ stands for E+_ or E-, the superscript u stands for + or -, i ± is the
distance from the object to the right (+) or the left (-/bounding plane (see Figure 2).
Pn is the tranverse position vector of the object, and Ku(K) I - k-2 kuk where I

8



is a unit dyadic. The dyadic A is a projection function that accounts for the spatial
* dispersion of the scattered waves. The dyadic RL is the scattering function of the nth

object when it is located at the origin. The factor exp{-i(K - K').p,} accounts for
the transverse translation from the origin.

The terms on the right-hand sides of (9) and (10) admit physical interpretations.
For example, there are three contributions to the total forward-traveling wave at the

• plane z = z,. From (9), we see that the first term represents the direct propagation of
the forward wave from the plane z = z,,-, to z = z,, as though the medium were ho-
mogeneous. The second term represents the incremental contribution due to scattering
of the forward wave in the forward direction. The last term represents the incremental
contribution from the backward wave, which propagates from the plane z = zn to the
object and scatters in the forward direction. A similar interpretation applies to the
corresponding terms in (10).

Equation (13) also admits a physical interpretation. The last two factors in the
integrand represent the incoming wave as it would be seen at the plane passing through
the center of the object if it were to propagate freely from the appropriate boundary
plane. The object, now acung only on the field at the center plane, scatters the incoming

* wave, which produces the incremental scattered waves represented by the dot product
between the incoming wave and the scattering function weighted by ik/2g(K). These
scattered waves then propagate freely to the slab boundary. The integral operation
accounts for the cumulative scattering from all Fourier components of the incoming
wave. Thus, in the spectral-domain formulism the scattering objects are effectively
replaced by scattering planes. The appendix discusses in detail how to calculate the

0 scattering function in a coordinate system centered on the object from the spectrum of
waves scattered by an incident vector plane wave.

The utility of equations (9) and (10) for solving complex problems can be illustrated
by considering their application to the computation of the exact mutual interaction
between two arbitrary scattering objects. Solving the two-object problem using MOM

* requires an eight-fold increase in computation time and twice the storage as is needed
for a single object. Twersky [11] has formulated the two-object multiple-scatter problem
as an infinite multiple-scatter series, each term of which uses the asymptotic scattering
dyadic for one or more of the particles. His method yields some useful approximations
for random particle configurations, but the multiple-scatter series cannot be solved
exactly. On the other hand, by simply writing (9) and (10) for a two-particle system,
we obtain an exact linear equation for the fields crossing the plane separating the two
scatterers. Once these excitation fields are computed, the complete problem can be
solved with a few simple manipulations; moreover, one scatterer can be replaced with
a reflecting plane or a rough surface.

For two objects separated by a distance AL as shown in Figure 2, a straightforward

9
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Figure 2: Geometry for two-object computation with definition of symbols.

application of (9) and (10) leads to the following equation for E-:

El -H O(I'@Ej = E,,,exp~ikgL2} +H2@Ei, (14)

where ti,,, is evaluated at the plane z = z 2. This equation can be solved numerically 0
solved for Ej. The remaining fields are then determined from the following equations:

+t = E (15)

Eo = El exp{ikgL,} + I-@E-1 (16)

-+= E+ exp{ikgL 2 }+1 +E3 + +@E@t (17)

These results are valid for any pair of objects, although some care must be taken in
defining the appropriate scattering function for a conducting surface of infinite extent.

Suppose, for example, that the first object is a perfectly conducting infinite planar
surface. An arbitrary surface can be generated by adding higher-order spatial Fourier
components to the zeroth-order term representing the mean surface height. This com-
ponent scatters the incident wave in the specular direction and cancels the incident wave
in the forward direction on the other side of the surface. Thus, the scattering function
for an infinite, perfectly conducting surface contains a delta function. The scattering
function for a conducting plane is given by (A75, .476) in the appendix. It is convenient
to decompose the scattering function into a regular part. ft, and a singular part. The

1
10



singular part consists only of a delta function, which can be integrated analytically.
The four scattering functions for a perfectly conducting surface can be written formally
as

+ K') _ j 4:t(K, K') 8 7r2g(K) 6(K - K')(I - 2aza,), (18)

ik
* and

and +(K, K') =t ±. =t(K, K') g(K,) 8(K K')I,
ik

where a, is the unit vector along the z direction. Upon substituting the above scattering
functions into equations (14) through (17), we obtain the following results for a surface-
particle aggregate:

0 E--- -@(l- - j-+@ [(2aa, - I).E-(K')expji2kg(K') + }]
= Ei,,exp{ikgL2} + R2 - TEji (20)

Et+(K) = (2a~a -I).E-(K)exp{i2kg(K)1 + } +A+-t(K,K')@E-(K') (21)

E(K) = 0 (22)
Ef+(K) = E+(K)exp{ikg(K)L} + i+@t+ + (23)

To convert the forward and backward wave fields to physical observables, we note
that at distances well removed from the reference plane, the Helmholtz integral can be

* approximated by the method of stationary phase to yield

ikg(K,)E (K,)exp{ikr}/(27rr) three-dimensional
E(r) z (24)E vc g(K )E+(K,) exp{ikr}/'/r two-dimensional

where K, is a wave vector directed along r. The physical observable of particular
interest to us is the angular power density in the direction k for a given incidence ki.
It is given by

K 21 g(K)jjEt±(K) 2 /(4r') three-dimensional
P±(k(K), k,) = (25)

I kjg(K)I2 IfE+(K)12/(2r) two-dimensional

In the next section we shall relate the angular power density to the dimensionless
differential cross section -y(k(K), ki).

It is instructive to specialize the above results for the case of parallel polarization.
In this case the wave fields become scalar and equations (14') through (17) or (2oI)

11
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through (23) can be converted to their equivalent scalar forms by making the following

substitutions:

&,u(K).jH(kU(K), k"(K')).in_ (K') -- -If,(ku(K), k(K'))1k_. (K')
(2aza, - I).E-(K) (K)•

The equations are greatly simplified for isotropic scatterers, in which case

,_u(K).kH(ku(K), k"(K')) -- h, (26)

where h,, is a constant. When (26) holds, the @ operator can be evaluated numerically.

For example, (13) becomes 0
R, f 2g(Khexp{-i[K-Pn - kg(K) ]}n n (p,), (27)

where zp is the z coordinate of the nth particle and On_- is the free-space propagation

of the wave field from the slab boundary z,_ 1 or Zn, i.e., 0

ft_ (Pn, = JJr2 - .-,(K)exp{i[K.pn + kg(K)Izp - z- -I,} (28)

With these simplifications, the spatial-domain forms of (14) or (20) can be computed

analytically. To accommodate both the two- and three-dimensional forms, we let

dK 2exp{i[K.p + kg(K)IzII} 0
G(r) jj(27r) 2kg(K)

J exp{ikr}/(47rr) three-dimensional

= (29)

iHo)(kr)/4 two-dimensional (

Note that the three-dimensional form has the units m - 1, whereas the two-dimensional

form has no units.

By using (27) and (29), the scalar isotropic form of (14) can be solved for i-(p 1 , zp1).

To this end, we multiply both sides of (14) by exp{ikg(K)i '}, take the inverse Fourier

transform, and evaluate the result at p = p, to obtain

0P (pj, zpi) + h2k2G12 ibo (p,, (30)
4Q"(p 1 ,Zpi) =i1 - hih 2 (k 2 G12

2  '(

where

G 12 = G(Ip1 - P 2 - \La:I) (31)

12
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is the spherical-wave propagation factor for the distance between the particles. The
denominator of (30) accounts for the mutual interaction of the particles. From (17),
the backscattered wave spectrum can be computed as

+(K) = ik[2g(K)]-lhl exp{-i[K.pl - kg(K)(AL + )]} 4j-(pI,zpi)

+ ik3 [2g(K)]-'hih 2GI exp{-i[K'p 2 - kg(K)1 -]} 0-(p1 , zpI)
+ ik(2g(K)J-'h2 exp{-i[K'p 2 - kg(K)I+J} 4'(p 2 , zp2). (32)

The three terms in (32) represent the direct propagation of ¢ithe forward scattering
of -by the second object, and finally the incident wave backscattered by the second
object.

To compute the forward-scattered wave field spectrum o(K), however, we must
proceed in two steps. From (14),

¢b-(K) = 4'in,(K) exp{ikg(K)L 2} + ik[2g()-h 2 exp{-i[g.p2 - kg(K)l]}

X [Oip(P 2 , zp2) + hik2G12g4 (Pi, zp,)]. (33)

Now io(K) can be computed from (16) as

io (K) = 4';(K) exp{ikg(K)LI} + ik[2g(K)]-hi

x exp{-i[K-pl - kg(K)-I]} 4j(pl, zpl). (34)

* Following the same procedure, equation (20) can be solved for P1-(P2, -AL) for the
case of an isotropic cylinder above a perfectly conducting plane. However, the factor
used is exp{ikg(K)(AL +I+)} and the inverse Fourier transform is evaluated at p = P2.
Explicitly,

-iL c(P2, -AL) + h2k2 G(2AL) w,(P 2, zp2 ) (35)

*0 1P2 -AL h2k2 G(2.AL) (5

The backscattered wave field is given by

i+(K) = -4 (K)exp{ikg(K)(2If + L2 )}+ik[2g(K)I-lh2
x exp{-i[K.p 2 - kg(K)ij ]} [Wic(P2 ,ZP2) - 4y(p 2, - L)], (36)

where 4'(K) is found from (20) to be

V)-(K) = i,(K)exp{ikg(K)L2 } -4- ikr2g(K)V'h 2

×exp{-i[K.p 2 - kg(K)f.7} 2 P2). (i -AL)! (37)
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We shall see that the two terms in (30) or (35) combined with the leading two
terms in (32) or (36) can add coherently to produce a four-fold amplitude enhance-
ment or 12 dB. For irregular surfaces, which cannot be accommodated analytically, the
enhancement is potentially larger.

In conclusion let us note that if the scattering functions are known,. (14) or (20) can
be put in the form of a system of linear equations by performing a matrix multiply to
evaluate the left-hand sides and a vector multiply to evaluate the right-hand sides. The 0
system of equations can then be solved numerically to determine Ej-. The computation
time is dominated by the matrix multiply (-, N,3 computations if 1i(k±, k$) is an
N, x N, matrix), and the solution of the resulting matrix equation (an additional
- N, computations). The computation time for the remaining fields, which involve
only matrix-vector multiplies, is negligible. Thus, the total number of computations for
solving the two-scatterer problem varies like 2N,3 with the mutual-interaction-method 0
(MIM) versus (2N,)3 for MOM.

0
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111.2 Numerical Simulations

For the numerical simulations, we will only consider problems that admit variations in
two dimensions (x, z). The above equations are essentially unchanged except that K is
replaced by k.. For example, equation (13) becomes

dk ik exp{ -. (k. - k')x,,}

- n Ix~2k~J 27r 2g(k )
Xr&u(k.).Hn(ku(k.), k:(k')).fE_ (k')exp{ikg(k'tJ. (38)

To solve for the mutual interaction between two objects, we need to know their individ-
ual scattering functions. The appendix presents a complete derivation of the scattering
function of a single object with explicit results for an infinite cylinder, an infinite con-

• ducting plane, and a planar conducting surface. The scattering function of all but the
rough conducting surface can be obtained in analytic form.

To illustrate the mutual interaction method, we will perform computations for (1)
a pair of parallel cylinders and (2) a cylinder above an infinite conducting surface. The
z axis is vertical, with the axis of cylindrical symmetry lying along the y axis. Thus,

* the surface height varies only in the x direction. The incident wave normal vector is
assumed to lie entirely in the xz plane with two principal polarizations. For axial or
parallel polarization, the incident electric field vector is perpendicular to the incidence
plane (i.e., parallel to the cylinder axis). For transverse or vertical polarization it lies
in the plane of incidence (i.e., perpendicular to the y axis). The projection of the
scattering dyadic onto the direction of the incident wave can be written in the general
form

PC.H( k,, kj.).a,(ki.) = a,(k,.)H1i..1(ks,, ki), (39)

where ai,8(k ) is a unit vector along the k. Fourier component of the incident or scattered
wave field. In general, a, depends on the object's geometry and the incident wave
polarization.

* For an infinite cylinder with refractive index m and radius a, lying along the y axis,
the scattering functions are given as follows:

00

H11(k,, k) = 4ik- 2  c, exp(ina), (40)
n=-oo

and

H±(k,,k,) = 4ik -2 1 dexp(ina), (41)

where c,, d,, and a are given by (A63) to (.472) in the appendix. These equations
define the scattering functions for all values of ,,, and k,,. When Ik,, > k or k,., k.
a is complex.

0 '5
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Figure 3 shows the magnitude of the scattering functions of a perfectly conducting
cylinder and a dielectric cylinder with refractive index m = 1.5 illuminated by an
axially polarized, 7.5-m free-space wavelength wave. Both cylinders have the same 1-m
diameter. The plot shows the magnitude as a function of the normalized scattered
wave number k,. for a fixed incidence ki, = 0. The scattering functions are essentially
constant over the range of Ikoz/kI < 1, i.e., all real azimuthal angles. This is the
scattering behavior of the zeroth-order cylindrical normal mode, which is azimuthally
independent. Thus, the zeroth-order cylindrical normal mode dominates the scattering
for this cylinder.

In general, a small cylinder (a/A < 1) scatters essentially uniformly in azimuth, and
the scattering function can be approximated by the zeroth-order term only, whereby

H 1 } 4ik2{ co h, (42)

which can be used in (30) and (32) or (35) and (36). If the cylinder diameter is large
compared to the incidence wavelength, however, the scattering function is no longer
axially symmetric. This behavior can be seen in Figure 4, which is the corresponding
scattering function for a large cylinder. In this case the higher-order cylindrical normal
modes are significant, and the integral equation (14) lends itself to numerical solution
only. For rough surfaces, numerical solutions must be used in all cases.

The scattering functions for an infinite conducting plane are given by (A75) and
(A76), which are reproduced here for reference purposes:

-(k., k1 ) 4 W9gk.)8(k.. - ki.)(a~a. - aza,) (43)
ik

Kc±.am(koZ, kiZ) = 4 7rg(kaz)8 (k.. - ki.)(a~a. + aa.) (44)
ik

Thus, the scattering function for a conducting.lane consists only of a delta function.
The backward scattering functions H+- and H+ describe the specular reflection of
the incident wave. The forward scattering functions H++ and H-- represent the di- 0
rect propagation of the incident wave with a phase shift of 1800 so that the total wave
vanishes identically behind the plane. The scattered wave behind a flat or rough con-
ducting surface always exactly cancels the incident wave. Hence, the forward scattering
function always contains a delta function. The scattering function can have additional
delta functions, however, because the scattering of a wave from a surface is a wave-wave
scattering process where the second wave comes from the surface itself. The spectrum
of a rough surface can contain one or more discrete Fourier components. The discrete
component at zero spatial frequency corresponds to the zero-mean surface component.
These discrete Fourier components are responsible for the specular reflection of the
incident wave.

16
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Figure 3: Magnitude of the scattering function of an infinitely long cylinder 15 m in
diameter illuminated by an axially polarized 7.5-m wavelength wave incident along the
z axis for two cases: (a) perfect conductor. (b) dielectric with refractive index of 1.5.
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Figure 4: Magnitude of the scattering function of an infinitely long cylinder 15 m in
diameter illuminated by an axially polarized 7.5-m wavelength wave incident along the
z axis for two cases: (a) perfect conductor, (b) dielectric with refractive index of 1.5.
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Because each specular reflection is characterized by a delta function, it is desirable to
0 separate the scattering function into a regular part, ft, and a singular part consisting

of all the delta functions. Thus, the scattering dyadic can be written formally as

Rl(kz, ki-) = Rt(koz, kz) + 1: apaqhp, 5(ko, - kz,pq), (45)
P,q

• where hpq is the appropriate amplitude, ap or aq is a unit vector, and the summation
runs over all three orthogonal directions. The singular part can then be integrated ana-
lytically in the above difference equations before any numerical solutions are attempted.

The above decomposition is always applied to the surface scattering functions in or P
numerical solutions. For a conducting surface the regular part is identically zero. It is
not obvious, however, how to identify the singular part for a rough surface since it is
implicitly contained in the numerical solutions. In fact, the results from (A80) to (A95)
in the appendix can be summarized as follows:

g= (kk,. )  
2 g(k°.)!tv(k0.) (46)ik

* H+-(k, ki.) - ik)(47)' ik

Hj1 -(ko.,kj.) H.-(k°,ki.) - 4rg(ko.) 8(k. - ki.) (48)
ik

To extract the singular part, note that the backward-scattering function H+- is always
* singular because the zero-mean component of an infinite rough surface always scatters

the incident wave in the specular reflection direction. Assuming that the surface has no
other discrete harmonics, we can identify the regular part of the backward scattering
functions by subtracting the flat-surface component as follows:

H+-t = H+- +  ik - ki.) (49)
ik

The above results are given in terms of the scattered wave fields E, and E,, but
these fields cannot be derived analytically for a rough surface. In principle, they can
be obtained by solving numerically the problem of a unit-amplitude incident plane
wave scattering from the surface. Unfortunately, the incident wave spectrum is a delta

• function and therefore cannot be implemented numerically; however, the delta function
can be approximated by a finite-amplitude function to as high a degree of accuracy as
desired. A convenient choice is a narrow gaussian incident beam of the form

Ei(k,; z) - exp{-(k - k,)/k,}exp{ikz(ki)z}. (50)
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where k~i = k sin Oi and k,,, = const. (This gaussian beam is also used in the appendix
in the discussion of analytic continuation of the scattering function.) Note that the
k-integrated magnitude is unity, i.e.,

J_" dk Ei(k.; z) = 1, (51)

and the incident beam approaches a unit-amplitude plane wave, 2r8(k,, - k~i), as k,--
0. The scattering function is very sensitive to the beamwidth parameter k,. This
parameter is chosen such that the numerically discretized gaussian beam has only one
overwhelmingly dominant component at the central frequency k, = k~i. We typically
choose kw = 8/L where L is the length of the discretized surface.

The mutual interaction integral equation (14) is readily solved after the scattering
function of each scatterer is completely determined, either numerically or analytically.
The scattered wave field Ei can be solved numerically for an arbitrary incident wave
field, from which E and all the backscatter attributes can be computed (see Figure
2); however, these backscatter attributes are usually defined for an incident plane wave.
For numerical computation, we can approximate a plane wave by a narrow gaussian
beam of the form

Ei(k.,; z) = Aexp{-(k_ - ki) /k.' }exp{ik.(ki)z}, (52)

where A is the amplitude to be chosen. The choices were discussed in Section II.

For sufficiently small values of km/k, which approximates a plane wave, it can be
shown that if A is chosen so that the amplitude of the narrow gaussian beam integrates
to unity, then the angular power density P(k0, ki) of the scattered wave field in the
direction k, [cf. Eq. (25)] is numerically equal to the cross section 0r(k,, ki) of the two-
object aggregate. If A is chosen so that the power in the beam integrates to unity, then
P(k, ki) is equal to the differential scattering coefficient -y(k,, k). In the former case,
the scaling factor A is equal to 2v/..r/kw [cf. Eq. (50)], whereas in the latter case A is
determined by the condition that the total power integrated over all directions is unity,
i.e.,

J2 1E,(r, 0)1 2r dO = g(k.)IE,(k; z)2 1. (53)

Thus, the conversion factor in two-dimensional problems is given by
or(k,, ki) _4r k/ Ad4k 1r(k,,k,) r = g() (k2

- exp{-(k - k.) 4/kW} "  (54)

yf(k,,ki) k2, L-k2

For higher-than-grazing incidence this integral can be evaluated in a power series as
follows:

y(k,, k,) kw. =/'. 4  u 4

21i



Bockscatter Conversion Factor

4 .2 44 E- 3 5 3 5 -

3.00-

23 7.074E-3
• 9.095E-3

0.02

• o 0.05 -
0
E
E
a*0.0

A 7.5m 

0 10 ZO 30 40 53 60 70 80 o
Incidence Angle 0. - deg

Figure 5: Backscatter conversion factor O'o/3'o for A = 7.5 m as a function of incidence
angle for different values of the normalized beamwidth parameter km/k.

a0  = 1, (56)

a2  = -1/[2k 2g(k ,)], (57)
1 + 4k~i/k 2

a4 - 8k 4g4 (k,) (58)

1 + 12k 2k i + 8k- 4k4 i
a6 - 1 k (59)16k 6g9( k~i)

Note that Oc has the dimension of length, whereas -y is dimensionless, which is consistent
with (54). Equation (54) was calculated numerically for A = 7.5 m and is plotted in
Figure 5 as a function of the incidence angle for different values of the normalized
beamwidth k,,,/k. It can be seen that for the same beamwidtli k,.. the conversioni factor
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depends on the angle of incidence. All of the examples in this report use A = 7.5 m
and k,,,/k = 9.095 x 10- (which corresponds to L/A = 140) so that the conversion
factor is 22.16 dB at 600 incidence, 20.51 dB at 700, and 17.51 dB at 800. Since
o'/- is proportional to A2, Figure 5 can also be used to infer the conversion factor for
wavelengths other than 7.5 m.

111.3 Examples

To illustrate the flexibility of MIM for different objects, the calculation procedure de-
scribed in Section 111.2 has been applied to the following scattering problems: (a) two
identical closely spaced cylinders, (b) an infinite cylinder near a conducting plane, and
(c) an infinite cylinder near a conducting rough surface with a power-law spatial wave
number distribution. The cylinders arc 1 m in diameter and perfectly conducting (PC).
The wavelength for all our computations is 7.5 m, corresponding to an acoustic fre-
quency of 200 Hz. We use the scalar/acoustic model, which is equivalent to parallel
EM polarization for the two-dimensional problem. For the initial calculations, we use
an incidence angle of 600 with respect to the two-particle vertical axis or the surface
normal. The small incidence angle is the least demanding from a computational point
of view. Thus, it is a convenient starting point.

We first show the effects of the strong mutual interaction between two cylinders-
example (a). Figures 6 shows the bistatic scattering coefficient for AL = 5 m super-
imposed on the scattering cross section for a single cylinder. The scattered field from
the single cylinder is nearly isotropic at a level -29.78 dB in the normalized cross sec-
tion units we are using. The 600 incidence angle with respect to the two-cylinder axis
corresponds to 0 = -45* and Oinc = 150 in Figure 2. Figure 7 shows the backscatter
variation as the cylinder is moved away from the surface. The backscatter is alternately
enhanced and reduced relative to the free-space level; however, the peak backscatter
enhancements exceed the 6-dB level that would result from a simple coherent super-
position of the individual backscattered fields. Thus, multiple scattering is important
here. The solid curve is the analytic result for isotropic scatterers-(30) and (32). The
dominant features are preserved, but there are significant differences even though the
departures from isotropy are slight. We shall see that these effects are more pronounced
for plane surfaces.

To validate the MIM computations, the two-cylinder MIM results have been com-
pared to computations made with the NEC generalized electromagnetics code. The
NEC code performs three-dimensional computations using MOM. Figure 8 shows the
backscatter level as a function of separation for a wave iucident along the axis of the
cylinders (0 = 0°; Oi,9, = 0°), which tends to miminimize the backscatter enhancement.
Figure 9 shows the same computation for an incident wave broadside to the axis 4 the
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* Figure 6: Differential scatter coefficient for (a) a single cylinder and (b) two identical
cylinders separated by 5 m.

cylinders (0 = - 4 5 °; Oi, = 45°), which tends to maximize the backscatter enhancement.
As discussed in Section III.1, the 12-dB enhancement over the free-space backscatter
level is attributed to the fact that the small cylinders are nearly isotropic radiators
and there is a reciprocal pair of paths involving multiple reflections that can contribute
an additional doubling of the backscatter amplitude. We shall see that this effect is
even more prominent for small cylinders near a plane or rough surface. The small
discrepancies between the MOM and MIM results are attributable to the three- and
two-dimensional geometries and the finite beamwidth used in the mutual-interaction

* computations. In the NEC code, an incident plane wave and long but finite cylinders
were used. The MIM calculations ran more than three times faster than the NEC code,
but the comparison is not definitive because of the generality of the NEC code and the
fact that the MIM computation was initiated with known scattering functions.
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Two PC Cylinders (-45 dog. Oc=15 dog)

NUMERICAL SOLUTION FOR 2 PC CYLS
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Figure 7: Backscatter cross section for two identical cylinders as a function of their
separation AL.
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Two Perfec:Iy Condicting Cylincers -- Backscatter - 0 deg
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Figure 8: Comparison of NEC and MIM calculations for a wave incident along the axis
of the cylinders.
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Two Perfectly Conducting Cylincers Backscatter -90 deg
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Figure 9: Comparison of NEC and MIM calculations for a wave incident broadside to
the axis of the cylinders.

26



20.

10.

"O -10.

•0
E*~ _ 20.,

* '0.

-90 C. -75. -85 -45. -30. - 5. 0. IS. 30. 45. 60. 75. 90.
Theta - deg

Figure 10: Differential scatter coefficient for a cylinder and a flat surface for three values

* of the distance AL (4, 5, and 6 in).

We now turn to example (b), effectively by replacing the first object in Figure 2
with a flat surface at z = 0. Figure 10 shows the differential scatter coefficient as a
function of scattering angle for an incidence angle of 600 with respect to the surface

* normal and for three values of AL (4, 5, and 6 in). The peaks at 9 = -60' are due
to the specular reflection from the surface. In the backscatter directions, the scatter
is much stronger than the corresponding level from a single cylinder; moreover, the
backscatter at AL = 4 m exceeds the maximum level achieved for two cylinders-see
Figure 7. Figure 11 shows the variation in the differential scatter at AL = 5 m for
incidence angles of 600, 70' , and 800. For this particular separation, the backscatter

• level is nearly constant for the three incidence angles shown, but the incidence-angle
dependence of the backscatter level is strongly dependent on the distance of the cylinder
from the surface.
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PC Cylinaer - Flat PC Surface (heta.inc - 60, 10, 80 deg)
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Figure 11: Differential scatter coefficient for a cylinder and a flat surface for three values
of the incidence angle 6i (600, 70 , and 800).
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Figures 12, 13, and 14 show the backscatter variation as a function of distance for
* the 60', 70', and 80 incidence angles used in Figure 11. The backscatter enhancement

peak is insensitive to incidence angle, but its location moves progressively away from
the surface as the incidence angle is increased. For comparison purposes we have also
plotted the analytic isotropic formula (36) where the cylinder's scattering function is
approximated by the azimuthally independent term only. If we use strictly isotropic

* scattering functions in the numerical computations, the analytic and numerical results
are identical. Thus, the differences between the two sets of computations shown in
Figures 12, 13, and 14, are due entirely to the small departure from isotropy of the
scattering from the 1-m cylinder. We see that the isotropic formula predicts higher
peaks and deeper nulls, with the differences increasing with increasing incidence angle.
Both the analytic and numerical results show the effects of higher-order interaction

* terms as the incidence angle increases. Both results also show that the backscatter
enhancement peak increases with increasing incidence angle. At 800, it exceeds 12 dB
for both the exact and isotropic curves.
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PC Cylinder Above Conducting Plane (60 deg Inc)
0

NUMERICAL SOLUTION FOR PC CYL

- ANALYTIC SOLUTION FOR ISOTROPIC PC CYL

-10

M -20-

0

E
E

X. -3

-4C 

•
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Figure 12: Backscatter cross section for cylinder near plane as a function of distance
AL at 600 incidence.
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PC Cylinder Above Conducting Plane (70 deg Inc)
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Figure 13: Backscatter cross section for cylinder near plane as a function of distance
AL at 70* incidence.
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PC Cylinder Above Conducting Plane (80 deg Inc)
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Figure 14: Backscatter cross section for cylinder near plane as a function of distance

AL at 800 incidence.
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To introduce the results of primary interest, we now turn to example (c). A flat
surface alone scatters energy only in the specular reflection direction; however, if the
surface is made slightly rough, the energy of the incident wave will bc scattered poten-
tially in all upward directions. The scattering characteristics of such a rough surface are
shown in Figure 15. Panel (a) shows the realization of a linear ocean surface at wind
speed U = 10 m/s. Panel (b) shows the differential scattering coefficient for a wave

*(1) incident on this linear ocean surface alone, (2) incident on the linear ocean surface
with a cylinder 5 m below the zero-mean surface level, and (3) a PC cylinder 5 m below
a planar surface. The scattering characteristics of the linear ocean surface alone were
computed numerically using MOM, which illustrates the technique of combining objects
whose individual scattering characteristics are more easily managed.

Several points should be noted. The effects of the cylinder interacting with the
rough surface exceed the rough-surface level at essentially all scattering angles greater
than -20'. In the backscatter region, the scatter from the cylinder dominates, but the
rough-surface level is several dB higher than the exact computation for the flat surface.
It should also be noted that the bistatic scatter mimima between 40' and 500 for the
rough and flat surfaces are significantly displaced from one another. The actual surface

* realization is shown in Figure 15 (a). One can see that even when the surface height is
still a small fraction of a wavelength there it exerts a significant effect on the scattering
characteristics of a nearby object. For small levels of roughness the interaction tends
to systematically increase the backscatter enhancement.
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(a) Surface Height -- 700/5 pts, U = 10 rn/s
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(b) Differential Scatter Coefficient -- ,= 70 deg
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Figure 15: (a) A realization of a zero-mean one-dimensional linear ocean surface. (b) S
Differential scatter coefficient (1) for this surface alone, (2) for a PC cylinder 5 m below
this surface, and (3) for a PC cylinder 5 m below a planar surface.
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IV Scattering from Near-Surface Bubble Clouds

As discussed in Section I, the bubble clouds are modeled as static impermeable objects
with known scattering characteristics. At this level of idealization, there is no serious
compromise in assuming the bubbles to be perfect voids; moreover, to accommodate the
surface interaction under the high sea state conditions that cause the bubble clouds, we

* are constrained to two dimensions. Thus, we will perform our model computations for an
impermeable cylinder near an irregular surface. Because the low-frequency cutoff of the
anomalous scatter is likely to be dependent on detailed bubble characteristics, we have
used the single intermediate frequency of 200 Hz for all the simulations. We have also
used only one representative bubble diameter of 1 m. The variable parameters are wind
speed, incidence angle, and the distance of the bubble cloud from the surface height
reference level. As the mutual interaction equations are formulated herein, we must
have a plane separating the surface from the adjacent scattering object representing
the bubble cloud. Thus, the minimum distance at which we can compute bubble cloud
scattering is the depth of the deepest trough for the particular surface realization.

The surface realizations are generated by applying the improved linear represen-
• tation method described in [1], which allows us to efficiently convert linear Donelan-

Pierson ocean-surface realizations to their nonlinear counterparts. The acoustic scatter
simulations are formally equivalent to horizontally polarized EM scattering, but the
scattered signals are reflected from the bottom side of the surface realizations. In [1J
we showed that the top-bottom asymmetry of nonlinear surfaces can change the cross
section by as much as 5 dB at high sea states. For ocean-surface realizations, sea state
is the principal parameter. The simulations were run for three wind conditions: U = 10,
15, and 20 m/s, or 20, 30, and 40 knots. Although some accommodation must be made
for the one-dimensional surface realizations, these correspond roughly to Beaufort sea
states 5, 7, and 9, respectively. Sea state 9 is a strong gale. The reference surface bistatic
scatter coefficient is computed for each wind speed, with typical values lying between

* -50 and -60 dB-see Figure 1. All the results are presented as unitless differential scatter
coefficients. The conversion to cross section units is discussed in Section 111.2.

As a reference for each wind speed and incidence angle combination, we plot (1)
the surface realization for the first rough surface, (2) the bistatic scatter coefficient for
the surface alone, (3) the analytic bistatic scatter coefficient for an isotropic scatterer
below a plane surface, and (4) the bistatic scatter coefficient at the distance near the
first maxima. The cylinder is located along the z axis, with the depth of the maximum
trough indicated on the reference plot. To complete each set, we plot the backscatter
coefficient for each realization as a function of distance from the common reference level
and the corresponding analytic result for isotropic scatterers. The reference level for
the rough surfaces is the constant height level that results from linearly detrending the
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surface segment as described in [1]. This reference level is close to (within 10%) but
not equal to the mean surface height.

The computations are performed for incidence angles of 60', 70', and 800. For
positive incidence angles, wave motion is toward the observer. This mainly affects the
symmetry of the surface Doppler spectra, which are not computed for this preliminary
static bubble cloud model. Two independent surface realizations were used for each
computation to show the sensitivity to the detailed surface structure. The plots are 0
presented in order of increasing wind speed at the end of this section. The top-bottom
asymmetry of the nonlinear surface realizations is evident in the reference plots.

All the simulations presented here were run at the NASA-Ames NAS supercomputer
center on a CRAY Y-MP computer. The computation time is driven by the two matrix
inversions required. For a given surface realization, a single impedance-matrix inversion
provides the information needed to compute the surface scattering function for all in-
cidence angles. Computation of the nonlinear surface realization requires only Fourier
transformations and efficient vector manipulations. Solution of the mutual interaction
equations requires another matrix inversion. The primary check on the integrity of
the computations is energy conservation. Because the surface and the cylinder are im-
penetrable and lossless, all the acoustic energy that is directed toward the surface and 0
cylinder must be accounted for in backscatter. Depending on wind speed, to achieve
better than 10% and ideally better than 1% overall energy conservation required 700
to 1200 unknowns. Tapering the incident field is also necessary to control spurious
edge effects, but as with a real experiment the beam effects on the cross section can
be removed. For the data presentation here, however, we work in relative rather than
absolute units. The individual data runs required between 8 and 15 minutes of CRAY
Y-MP time, although the independent processors were not used in parallel. Parallel
processing could be used for more efficient throughput for future Doppler computations
where more than 30 computations per surface are needed.

The U = 10 m/s data show the same general features as the flat-surface isotropic
model; moreover, the differences between the two surface realizations is small within 0
10 m of the surface reference level, which is the region of interest. The main feature to
note is that at the location of the deepest trough where the computation is initiated,
the backscatter coefficient is generally near or above the free particle level of -,- -30
dB. Thus, once the bubble cloud is at the depth of the deepest wave trough, it can
cause a significant backscatter enhancement over its free-surface value. The incidence-
angle dependence acts to lower the cross section at the level of the deepest trough as
the incidence angle is increased. Large incidence angles are most relevant to acoustic
surface reverberation.

The U = 15 m/s data show significantly different details but qualitatively similar
behavior. The 600 data evidently are already beyond the first maxima for a flat surface
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at the depth of the deepest trough. Because of this, the first rough surface maxima
occurs at 10 m below the reference level. At the higher incidence angles, however, the
initial surface backscatter point occurs within the envelope of the first maxima of the
analytic curve. Once the incidence angle reaches 700, the principal characteristics of
the backscatter enhancement are established.

The U = 20*m/s surface realizations have crest-to-trough excursions that exceed the
* incident wavelength, as can be seen from the surface realization in the reference plots.

Such large surface roughness provides a severe test of both the surface-scatter and
mutual-interaction codes. We found that we could maintain good energy conservation
for the computation of the scattering function representing the surface, but in the
ensuing mutual-interaction computation, energy conservation was degraded significantly

* depending on individual surface realizations. For the U = 20 m/s surface realizations
shown in this report these errors may be as high as 23%. Surprisingly, however, these
errors were confined to the 600 and 70' incidence angles. At 800, energy was conserved
to better than 8%. The relative error of the ratio of the total scattered energy to the
incident energy is summarized in Table 1.

Table 1: Relative Energy Conservation Error

U=10m/s U=15m/s U=20m/s

* 600 incidence 0.03-0.04 0.10-0.13 0.18-0.23

700 incidence 0.01-0.03 0.05-0.08 0.12-0.18

800 incidence 0.01-0.03 0.01-0.05 0.00-0.08

* While the U = 20 m/s results are somewhat poorer in terms of overall energy
conservation, we believe that the main features are correctly represented. We observe
much larger variations from realization to realization and significant departures from
the simple lobing pattern predicted by the analytic curves we have used for reference. A
complete characterization of a small object scattering near such a rough surface clearly
demands a statistical characterization, which is beyond the scope of our current effort.
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(a) Nonlinear Surface' Height -- 700/5 pts, U =10 rn/s
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Figure 16: Differential scattering coefficients for U =10 rn/s at 60' incidence.
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Figure 17: Backscatter cross section as a function of distance for U 10 rn/s at 600
incidence.
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(a) Nonlinear Surface Height -- 700/5 pts, U =10 rn/s
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Figure 18: Differential scattering coefficients for U = 10 rn/s at 700 incidence.
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Figure 19: Backscatter cross section as a function of distance for U =10 ni/s at 70'
incidence.
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Figure 20: Differential scattering coefficients for U 10 in/s at 800 incidence.
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Donelan-Plerson Nonlinear (U=1O m/s, E)-,80 deg)
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Figure 21: Backscatter cross section as a function of distance for U = 10 m/s at 800
incidence.
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(a) Nonlinear Surface Height -- 700/5 pts, U =15 rn/s
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Figure 22: Differential scattering coefficients for U 15 rn/s at 60' incidence.
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Figure 23: Backscatter cross section as a function of distance for U =15 rn/s at 60'
incidence.
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(a) Nonlinear Surface Height -- 700/5 pts, U 15 rn,',
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Figure 24: Differential scattering Coefficients for (U 15 rn/s at 700 incidence.
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Donelar-Pierson Nonlinear (U=15 rn/s, (D,=70 deg)
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Figure 25: Backscatter cross section as a function of distance for U 15 rn/s at 700
incidence.
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(a) Nonlinear Surface Height -- 700/5 pts, U =15 rn/s
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Figure 26: Differential scattering coefficients for U= 15 rn/s at 80' incidence.
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Figure 27: Backscatter cross section as a function of distance for U 15 rn/s at 800
incidence.
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(a) Nonlinear Surface Height -- 700/5 pts, U =20 rn/s
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Figure 28: Differential scattering coefficients for U 20 rn/s at 60* in~ciden~ce.
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Donelan-Plerson Nonlinear (U=20 m/s, 0,.,=60 deg)
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Figure 29: Backscatter cross section as a function of distance for U =20 rn/s at 600
incidence.
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(a) Nonlinear Surface Height -- 700/5 pis, U =20 rn/s
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Figure 30: Differential scattering coefficients for ( = 20 rn/s at 700 in~ciden~ce.
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Figure 30: Backscatter cross section as a function of distance for U 20 m/s at 700
incidence.
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(a) Nonlinear Surface Height -- 700/5 pts, U =20 rn/s
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Figure 32: Differential scattering coefficients for U =20 rn/s at 800 incidence.
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Donelan-Plerson Nonlinear (U=20 rn/s, 0,,=80 deg)
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Figure 32: Backscatter cross section as a function of distance for U 20 rn/s at 800
incidence.
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V Conclusions and Recommendations

In Section III and the appendix we developed the mutual-interac ion method in con-
siderable detail. The solution of (14) characterizes the multiply-scattered wave fields
between two arbitrary objects in terms of their wave-wave scattering functions. The
equation has the same form as equation (5.3) in [12], which was used to calculate the
scattering of a dielectric sphere above a substrate. If the scattering operator defined by 0
(13) is approximated by a matrix, (14) can be solved as linear system, whereupon the
scattered fields can be computed from (15), (16), and (17). These fields are identified
schematically in Figure 2. To the extent that the scattering functions are known, the
mutual-interaction method provides a potentially exact formalism for computing the
scattered fields. For isotropic scatterers near a plane reflecting surface, the equations
admit algebraic solutions, which are summarized by (35), (36), and (37). The degree to
which these equations reproduce the exact solutions for the 1-m cylinder scattering at
200 Hz is shown in Figures 12, 13, and 14. The departures from the exact curves, while
significant, are well within other uncertainties in the model. The principal limitation of
the isotropic flat surface model is that it does not accommodate wind-induced surface
roughness.

To model the scattering characteristics of subsurface bubble clouds in the presence
of the highly irregular surfaces that spawn them, we have combined our previously
developed techniques for scattering from dynamic nonlinear ocean surfaces with the
mutual-interaction method. With the restriction to two dimensions, the simulations
remain computationally intensive but within acceptable time/cost allocations of super-
computer resources. As discussed in Section I, we have extracted the simplest possible •
model of a subsurface bubble cloud that allows us to investigate its scattering character-
istics in the presence of a rough surface. We chose a fixed bubble-cloud size independent
of wind speed and calculated its scattering characteristics as a function of wind speed,
incidence angle, and distance from the surface reference level. These results are sum-
marized in Section IV. •

The simulations verify that a nearly impenetrable meter-sized object scattering in
the presence of a rough surface can easily account for the anomalous acoustic surface
reverberations. Indeed, our backscatter coefficient estimates, relative to the free-surface
backscatter coefficient, are much too high. This ratio is easily manipulated, however,
by changing the bubble-cloud cross section. Thus, we attribute this discrepancy mainly
to the simplicity of the bubble cloud model. The integrity of the model depends more
critically on how well it explains the observed wind-speed dependence of the anomalous
reverberations. In this regard, a consistent feature has emerged from the simulation
summarized in Section IV.

The backscatter coefficient at the level of the deepest trough, where the scatter

0
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Chapman-Harris 200 Hz
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Figure 33: Comparison of Chapman-Harris curves (solid) with wind-independent cloud
* model (dotted).

calculation is initiated, has the essential characteristics of the Chapman-Harris curves
that snimmarize measured acoustic surface reverberations. We can illustrate this in a
simple way by using the flat surface isotropic scatter model. Backscatter strength in this

* simple model is controlled by a single parameter, namely h2 in (35). The remaining
variable parameters other than wave number are distance from the surface reference
level and incidence angle. The two-dimensional model will not reproduce the correct
wavelength dependence, but all other aspects of the model are generally consistent with
the three-dimensional model. The incidence angle dependence, for example, is identical
in the two models. To introduce a wind-speed dependence in the flat-surface equations,

* we assume that the subsurface bubble population acts in aggregate as a large void
only at the depth of the deepest trough. We estimate this depth by using (1). With
this hypothesis, the only free parameter in the model is scattering strength. We have
adjusted this level to match the Chapman-Harris curve at a wind speed of 20 knots.
The results are shown in Figure 3\-,
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The bubble-cloud curves rise too steeply, but a constant bubble-cloud cross section
independent of wind speed is certainly unrealistic. We note also that the incidence-
angle dependence tends to saturate at the highest wind speed more rapidly than the
Chapman-Harris curves. This is most likely due to deficiencies in the isotropic flat-
surface model. We believe, however, that the bubble cloud plus rough surface model
has the potential to fully explain the observed acoustic surface reverberations. What
is needed is a detailed parametric study guided by more information on the observed
characteristics of sub-surface bubble clouds, particularly their wind-speed dependence.
The simulations can be performed efficiently with modest improvements in the scatter
code. At this point in time, the restriction to two dimensions is not severe.

The numerical simulations also have the potential to simulate broad-band signal
characteristics. Once appropriate parameters are established, the computations re-
quired are straightforward. Here, however, Doppler characteristics are important, and
good data management will be required in order for computer resources to be used effi-
ciently. In the course of developing the computer codes our initial effort has necessarily
been concentrated overall on computational integrity. With some effort, the simulation
codes could be run much more efficiently.

0

0
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Appendix

The Scattering Function

of a Single Scatterer

In this appendix, we describe the method of computing the scattering functions that
appear in the mutual-interaction equations discussed in Section III. Consider a time-
harmonic electromagnetic field with temporal variation exp( -iwt) propagating in an
unbounded medium characterized by the wave number k in the presence of a single
scatterer. The scatterer is located at the origin and is assumed to be enclosed in a
volume V, which is finite in the z direction. The incident wave field scatters from this
object, and the total wave field E can be written as

E(r) = Ei(r) + E,(r), (A1)

where E is the incident wave and E, the scattered wave. In [10] we showed that the
scattered wave field is given by

E8 (r) = k2 f G(Ir - r'l).S(r')dr', (A2)

* where S is the equivalent source function, and G is the dyadic outgoing Green's function.
Hereafter, dyadics will be distinguished from ordinary vectors by an underline.

The source function is related to the total wave that is impinging on the scatterer,
which is the incident wave E, for the case under consideration because the medium
contains only a single object. The relation is given by

S(r') = ]],H(r',r".E,(r"dr", (A3)

where H(r', r") is a dyadic that depends on the object's scattering characteristics. It
has been shown that H vanishes identically for r' or r" ,utside the object (131.
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The dyadic Green's function admits the two-dimensional Fourier decomposition

)dK I iexp{ikg(K)IZ-Z'}( K ) -6(z - z') aa.
Ir - r'I) ](2r)2 2kg(K) V2

x exp{iK.(p - p')} (A4)

where r = p + za,, a, is a unit vector along the z axis, I is the unit dyad,

[1 - (K/k) 2]' /2  if K < k (A5)g(K) = Z'i[(K/k) -2 1]1/2 if K > k

&(K) = I- k-2kk, (A6)

and the propagation vector k is decomposed as

k = K + k (K)az - K ± kg(K)a z  (A7)

with the upper sign chosen for waves traveling in the positive z axis and the lower sign
for waves traveling in the negative z axis. (For evanescent waves, the z direction of
propagation is defined as the attenuation direction to be consistent with the analytic
continuation, which will be discussed later.) For instance, re(K) in (A4) is evaluated as
,+ = I- k- 2 k+k+ when the observation point r is completely to the right of the object,
i.e, when z > max{z'}. The range of integration in (A4) is over all K, and our definition
of g(K) insures that each Fourier component in the integrand is an evanescent wave
that propagates in the transverse direction and attenuates in both the ±z directions.

The parameter g(K) was introduced to reflect the fact that we are dealing only with
monochromatic waves at a fixed frequency w. The free space propagation vector k is
thus constrained by the relation Iki = k = w/c where c is the speed of light. Since
k can vary in two dimensions only, a physically realizable monochromatic wave field
E(r) possesses only a standard two-dimensional Fourier transform. Let E(K; z) be the
two-dimensional spectrum of this wave field at the plane z = const. It follows that

E(K; z) = f,(K;zo)exp{ikz(K)(z - z0 )} = E(K;zo)exp{ikg(K)Iz - zol}, (8)

where z0 is a constant. It is helpful to introduce the generalized three-dimensional
Fourier transform for the wave field with the help of the Dirac delta function. Explicitly,

fE(k ± ) = E+(K;z = 0) 2ir6(k, T kg(K)), ( A9)

where the same notation fE denotes either the two- or three-dimensional Fourier trans-
form depending on the context of its argument.
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In general, the three-dimensional Fourier decompositions of E(r) and H(r', r") can
be written as

E,(r") = [ -[ E1 (kl") exp{ik"'.r"}, (A10)
ii(27r )3

H(r',r") = (2dk"l H (k', k")exp{i(k'.r' - k".r")}. (All))(2ir)3

In the following we are interested in the field outside the scatterer, hence the delta
function in the integrand of (A4) does not contribute. Substituting the above quantities
into (A2) yields

E ik dK dk' dk" dk'"
") 2 IVIdrJ/VJdr"( 27 )2 7r (27r) 3 N (2ir)311J (2ir)3

x #(K).__(k', k").E,(k"') [g(K)]- 1 exp{±iK.(p - p')}

x exp{ikg(K)Iz - z'I} exp{i(k'.r' - k".r" + k'.r")}. (A12)

The components of K, k', k", and k"' are independent real variables, but the z com-
ponent of k, k , in constrained by the relation k' + K 2 = k2 . In addition, the ± signs

* were conveniently introduced in the exponent of exp{iK.(p - p')} because G is an even
function of (p - p'). Because the integrand vanishes for r" outside V, we can extend
the r" limits to infinity and perform the integration over r" and k' to obtain

9 () dK dI I _ dk (K).l(k', k").E,(k")
2 AIV if N(27r))

Sx [g(K)]-' exp{±ZK.(p - p') + ikg(K)Iz - z'j} exp{ik'.r'}. (A13)

Upon resolving the absolute value sign, we obtain

(2(r) k dK dk' dk"= --2 ) = dr'!!(27r)2 '/ - N / (27 ) .__' ".2("

2JJJv J f (27r )3]J 2r

Sx [g(K) - 1 exp{i(k' ± k(K)).r'} exp{T:ik(K).r}, (A14)

where the upper sign applies if z < z' and k, > 0 or if z > z' and k, < 0 , and the lower
sign applies if z < z' and k, < 0 or if z > z' and k. > 0.

To perform the r' integration, we further restrict our observation point to the regions
outside the slab a < z' < b where a and b are the minimum and maximum of the

* projection of the scatterer onto the z axis. In this case, the above integral can be
rewritten in a compact form as

E,(r) ik r, dK rr dk' (-r dk"=5r -jJd] (2,1 J 311!.) Ix K.i( k'. k").l ,tk"t

x [g(K)]-' exp{z(k' ± k(K)).r'} e.:p{:k!K I.r}. a or z b. A 15)
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where now the choice of sign depends on whether k(K) is directed away from or toward
the origin. In the former case the plus sign is chosen (outgoing waves), and in the latter 0
case the minus sign (incoming waves). The r', k' integrations are readily evaluated
after the r' limits are extended to infinity to yield

E5(r) = T dK dk"E-/(-// = 2 .(K).R(±k(K),k kE(k")

x [g(K)-'exp{-ik(K).r}, z < a or z > b. (A 16) 4

Thus the total scattered wave field at a fixed point r is a linear superposition of
outgoing or incoming plane waves. For finite values of z, both types of waves are
physically realizable for a many-scatterer configuration. In the one-scatterer problem
under consideration here, only outgoing waves are possible so that the total scattered
wave is given by

ik ffdK Aldk"ikK)r
Ei(r) = 2 r-# fff ) (K).H(k(K), k").E(k exp{ik(K).r}E(r) - r)2 _ 2~) __ .E kg(K) ( 1

Since E, is a physically realizable monochromatic wave, the relation (A9) applies and
the above equation becomes 0

ik dK dK" ep{ (K.r

E,(r) = -k ff ff K(K).H(k(K), k(K")).t(K"; z = 0)gex p j k (K) r }

2 (2r) 27 --2 g( K)

(A18)
This formula completely determines the scattered wave field outside the scatterer

once the scattering function H is known. The relation is simpler in the Fourier domain. 0
In fact, taking the inverse two-dimensional Fourier transform yields the spectrum of the
scattered wave at a plane z = const.,

E8(K;z) = ikexp{ik,(K)z} dK"

Lg(K JJ(K;) z)(K).ft(k(K),k(K")j.fj(K"; z = 0). (A19)
2g(K) (d197)2-)

Our goal, howeve , is to solve the integral equation (A18) for the scattering function S

H. It can be seen that the scattering function is independent of the choice of the
incident wave. Thus we can choose a unit-amplitude incident plane wave of the form

E1(r) = aexp{ik,.r} (A20)

E,(K";z) = a,(2r) 25(K" - K,)exp{ik,(K,)z}, (A21)

where a, is the unit vector along the direction of E,, and k, = K, + azk (K,). The K"
integration in (A18) then yields a simpler integral equation for H,

ik( = dK ep{k.(K)z}exp(ZK.p)
E,(r) = 2 J j _(K). (k(K).k,).a, "'- N) .22)
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Since H is independent of r, the above equation can be solved by evaluating the integral
* at large r in a fixed direction. Since the condition z < a or z > b then becomes [z I - 00,

we can evaluate this integral by the method of stationary phase to obtain

J ik2 K(Ka).Ht(k, ki).a, exp{i(kr - 7r/4)}/V _P 2-dim
E,(r) - (A23)

-k 2 &(K,).H(k,, kj).a, exp(ikr)/(47rr) 3-dim

where k, denotes the scattered wave normal vector directed along r (i.e., k' = ka,),
and K, is its transverse.

Note that the condition Iz1 -4 oo excludes the case g(K,) # 0 from the above results.
Although the above result was derived from the argument of physical realizability, it

* is valid for all cases listed in (A15). In fact, we can derive this result independently
for each of the four cases using the method of stationary phase. Thus, the scattering
function is completely determined by the far-field behavior of the scattered wave.

The scattering function is also related to the angular spectrum of the scattered waves
at a reference plane z = zo outside the scatterer. To see this, we need to evaluate the
diffraction integral

E,(r)1 dK E,(K;zo)exp{ik,(K)(z - zo)}exp(iK.p) (A24)

by the method of stationary phase for large z. The result is

* kg(K),,(K,)exp{i(kr - 7r/4)}/v/7 2-dim

E, ikg(K)E,(K,)exp(ikr)/(27rr) 3-dim (A25)

where E,(K,) is a fictitious spectral function defined by

E,(K,) =E,(K,; zo)exp{-ik,(K,)zo}. (A26)

Thus, we obtain the following exact relationship for both two and three dimensions:

_-(K,).F(k+(K,),k,).a,(k,) = 2g(K,)E:(Ka)/(ik), IK,[ # k (A27)

where for clarity the superscript ± has been appended and the dependence of a, has
been added. Since the above relation is in the Fourier domain, it is understood that the
unit vector a,(k,) characterizes the direction of polarization of one particular Fourier
component k,.

Although E,(K,) seems to be a two-dimensional Fourier transform of the wave
field along the plane z = 0, it is physically not. It is obtained by propagating the
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physical scattered wave FE,(K,; z0) from the plane z = z0 back to the plane z = 0 as
if the scatterer were absent. Equivalently, the scattered wave E,(K,; zo) appears as if
it were generated from a single scattering plane located at z = 0. Thus, in the two-
dimensional Fourier domain an object can be replaced by a transverse plane with the
same scattering characteristics. For this reason two physically different scatterers are
considered identical if they produce the same spectrum of scattered waves for the same
incident wave.

For numerical applications it is convenient to introduce a vector version of the scat-
tering function defined by the relation

Wa,(K., K,) -,k _(K,)'H(k(K,),k(Ki)).ai(k(K)), K1 5 k. (A28)

The scattering vector function Wa is the two-dimensional spectrum of the scattered
waves produced by a unit-amplitude incident plane wave polarized in the direction a,.
The scatterer is completely characterized by the scattering dyadic H or, equivalently,
three scattering vectors W associated with three orthogonal directions.

In summary, we have derived an expression for the scattering function which is valid
for g(K,) $ 0. The case where g(K) = 0 can be handled rigorously by including the
6(z - z') term of (A4) in the calculations from (A12) to (A22) so that the results will
be valid for all z. We will, however, present a short-cut method below.

Determine the Scattering Function for Transverse Propagation

First, note that H is strictly a function of the propagation vectors k8, k,, and is therefore
coordinate-independent. To determine ft for k. I a,, we can rotate the coordinates
(x,y,z) to the new coordinates (igi) about the y axis through an angle 0. The
projection of r onto the new , axis is no longer zero, and the stationary phase result
(A23) applies with K, replaced by K,, i.e.,

{/ kexp{-i(kr-37r/4)} 2-dim
-(K,).H(k,,k,).a,- -k 2 E,(r) x , (A29)14irr exp(-ikr) 3-dim

which is valid for k8(K,) not perpendicular to the i axis. Since K, is related to K, by a
simple coordinate rotation, the scattering function at k,(K,) I a. can be obtained when
we appropriately evaluate the above equation. Since the coordinate transformation is
continuous in 0 and all the propagation vectors are fixed in (.429). we simply take the
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limit as 6 -- 0. This is equivalent to taking the limit of (A23) as r -* ra,. The result is

_k{ - v'8 exp{-i(kr - 37r/4)} 2-dim
_()._(k i.i--' -k- 2E(ra,) x

47rr exp(-ikr) 3-dim
(A30)

where ap is a unit vector along the transverse direction.

It is important to explore the analyticity of ft in the variable K,. The right hand
side of (A29), with K, set to K5, is bounded if the scattered wave field falls off with
distance no less fast than a radiation field. We will assume this is generally the case.
(There are exceptions such as scattering from an infinite, perfectly conducting surface.)
Since the above scattered wave field was derived for an incident plane wave, which is
an entire function in r, it is analytic in any homogeneous region such as the far zone.
Rotating r through all but transverse directions, which amounts to varying K,, we can
see that H is analytic in K, except on the circle IK,I = k. The behavior of E,(r), hence
H, on this circle can be inferred from (A22). In fact, each point K, on this circle is a
pole and branch point of E,(r). Equivalently, the point k,, = 0 is a pole and branch

* point when E,(r) is viewed as a function of k,,.

The compact notation H(k', k") introduced in (A11) stands for -(K', k', K", k)
where each variable was independent and was allowed to take any real value. However,
what we have obtained in (A23) are the function H defined on the shell k, I = k,jI = k
in the k space so that the second- and the fourth-slot variables are no longer inde-
pendent variables. Sometimes, to emphasize this fact, we write HI(ks, k,) explicitly
as H(K,, k,,(K5 ), K,, k,,(K,)). Fortunately this special form is the most frequently
encountered in our applications. For simplicity, we sometimes drop the dependent vari-
ables and write fI(K,, K,). However, this notation is ambiguous since to each value K,
correspond two incident wave normal vectors kl = K, ± kg(K,)a, where the ± sign
refers to the ±z direction of propagation. Similarly, there are two scattered wave normal

0 vectors k± = K, ± kg(K,)a,. Thus, the short notation __-+ or R(K , K±) can be used
to unambiguously denote the four scattering functions H(K,, ±kg(K,), K,, ±kg(K,)).
The scattering functions _H++ and H-- characterize the forward scattering behavior of
the object, and are therefore called forward scattering functions. The other two scatter-
ing functions, F+- and -U-+, are appropriately called backward scattering functions.

In summary, we can find the scattering function of a single object by analytically
or numerically solving the problem of a unit-amplitude incident plane wave, exp(ik,.r),
scattering from this object. Formula (A23) or (.427) then determines the scattering
function in terms of the far-field behavior or the two-dimensional spectrum of the scat-
tered wave fields. Repeating this procedure for the whole set of k,'s will result in a
complete description of H(k,, k,) for real vectors k,. k,. which can then be resolved
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into four scattering functions HP:+

Thus far we have assumed that both k, and k, were real in deriving the result for
H. This implies that 0 < K,,, < k, i.e., both k,. and k,, are purely real. However,
we often need H for all real values of K, and K, to compute the scattered waves in
a general problem where evanescent waves are involved. In the following we will show
that the relationship (A23) between the scattering function and the far-field behavior
of the scattered wave is still valid for all real values of K,,

Define the Scattering Function for Complex Propagation Vector k5

When only K exceeds k, it can be shown that the derivation from (A12)-(A16), and
hence the results, do not change provided that we use ks, = +ik[(K,/k)2 - 1]1/2 =_ ih,
where h is real. This can be seen as an analytic continuation in the complex k,, plane
from the point k,, = h to the point k8, = ih along the path h exp(i6) where 0 runs from
0 to 7r/2. This is possible because, as previously discussed, the scattering function is
analytic in k82 except at the branch point k,, = 0. The path of analytic continuation
must not pass through the branch point or the branch cut. This branch cut, which is
implicitly constrained by the definition of g(K) in (A5), can be chosen to lie either in 0
the second or the fourth quadrant only.

Define the Scattering Function for Complex Propagation Vector k,

However, the technique of analytic continuation is not obvious in the case where k,(K,)
becomes purely imaginary since the k" integration in (A12) may not collapse H(k', k")
into H(k', k,). The main difficulty is that analytic continuation on the variable k,,
in (A21) fails since the delta function is singular. The delta function is not strictly
a function, and any operation on it must be properly carried out on a sequence of
functions that approach it in the limit. The choice of this sequence is arbitrary.

The following sequence and its inverse Fourier transform suffice for our purposes:

'V?,(k.; k,.) = 27r-r exp{-f-r 2 (k. - k.r real, nonzero (A31)
O'(z;k,,) = exp(-r 2z 2/47r)exp(ik,,z)

since in the limit r -- 0 we have

V). ----* exp(ik,.z), 26 ---- , 2irb(k, - k,,). (A32) 0
Note that both sequences are analytic in kz for r 4 0. Thus they can be analytically
continued from the real axis to the imaginary axis in the complex k,, plane:

¢,(z;k,z = iEh) = exp(-r-2Z 2  4r) e,:p(- :h ) (.433)
,0,(k,;k,= ieh) =27' exp{-77 - - 43 )2}
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where e, = +1 and h = klg(K,)l. Thus the incident wave in (A20, A21) can be
* approximated by the sequence

E , (r) = exp(iK.p) ,(z; ki,) (A34)

E,,(k") = (21r) 26(K" - K,) i,.(k'; kz) (A35)

where ki, assumes a purely imaginary value iEh.

- Substituting (A35) into (A13) and performing the k" integration we obtain a se-
quence of scattered wave fields (cf. (A14)):

E , (r) ik dK dk'
111V 1 727Tr (27r) 3

l dkr' .(K).fl(k', K,, k"V)a, 7- exp{-irr-(k' - iEh)2}

x [g(K)]- 1 exp{i(k' ± k(K)).r'} exp{=Tik(K).r}. (A36)

The k integration can be evaluated by the method of steepest descent if H is assumed
to be analytic over the real and the imaginary axes of the complex kz plane. The
real k" path of integration can be deformed into a path (C) which is essentially the
same as the old path except for a portion near the origin where it is deformed to
pass through the saddle point ieh. Most of the contribution to the k integral then
comes from the neighborhood of this saddle point. In the limit of infinitesimal r,
T - exp{-7r 2 (k ,'-ieh) 2} becomes ,(k" -iEh) and E,,(r) approaches E,(r) as given
in (A14). If we repeat the calculations that follow Eq. (A14), we will obtain the same

* result 'isted in (A23).

Ncte that Eq. (A34) with r = 0 represents an incident wave that attenuates along
the E,- direction but grows unbounded in the reverse direction. Such a wave does not
posses a Fourier transform; however, E,.(r) with a nonvanishing r does have a Fourier
transfrrm.

TL ! analyticity of H in the variable K, can be inferred directly from the reciprocity
principle:

H(k(K,), k(K,)) = H(-k(K,), -k(K,)). (A37)

Conse;uently, the scattering function has the same behavior in both variables K, and
K,. It is generally analytic in K,, except on the circle JK,, I = k. It can be analytically
contir, :ed from purely real values of k, , ,, into purely imaginary values k,,,,, = --_i(k2 _

* K, ')" where the choice of sign is dictated by the attenuation direction of each wave.

In the following we will study the general scattering function for two-dimensional
problems and consider specific scatterers such as cylinders or perfect conducting planes.
Some notations to be used are r = a~x - a2z = (r.0) \'here () is the polar angle with
respect to the z axis, and k = ak-t-ak. = (k. 0).
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Determine the Scattering Function in Two Dimensions

Without loss of generality, we will show the procedure to obtain the scattering function
Hl(k(k,.), k(ki.)) for all real values of k,. and k,. for an object located at the origin in
two dimensions.

Let us assume that the problem of a unit-amplitude incident plane wave with real
ki scattering from this object can be solved analytically or numerically by some method
such as the method of moments. Let us further assume that the solution for the scattered
waves outside this two-dimensional scatterer can be written as a linear superposition of

outgoing waves of the form
00

E.(r) = E [axan + azbn]H(4)(kr)exp(ina). (A38)

Here, an and b, are the amplitudes of the nth normal mode, H(k1) is the Hankel function
of the first kind of order n, and a - 0, - 9i is the angle of k, with respect to k, and is
given by

a = ±cos-(k,.k,/k2 ) (A39)

with the correct sign prescribed by a = sin-'(k, x ki/k 2 ). The scattering function can
be immediately inferred from relations (A23, A38) with the help of the asymptotic form
of the Hankel function for large r as

(k.).H(k(k..),k(ki,)).a, -i4 = [axa,+ aabn](-i)nexp(ina), (A40)

where -k < k,,., < k.

To derive f! for all real values of k,, and k,.. we need to analytically continue the
right-hand side of (A40) from the real axis to the imaginary axis of the complex k,, and
k,. planes along a path in the first and the third quadrants. The angle a will become
complex,

a = a, + ia,, ar and a, real, (A41)

and the constants an, b,, if dependent on k,,(k 8,) and k1,(k,.), are assumed to be
analytic in these variables so that they can be analytically continued. The complete
expression for H can be written formally as follows:

&(k,.).(k 3,, k5 (ksx), k,x, k,z(k,,)).a, =

4 00

- E [axan(k,, k,,(k.x), k,'T'kzz(ktx)) - ab,(k,..k,,(k,,). ki, ,kzzikl ))

x (-i)'exp(-na,)exp(ina,), -c. ,- -)c X.442)
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Our goal is to determine a, and a1 for the case where either one or both of k,,, k,, are
purely imaginary of the form k,_ = iZEIk,,1, k1, = EjIk,,I with the sign E,,i = +1 refers
to the direction of attenuation along the ±z axis. In general, we can derive a, and a,
from

cosa = k-2 k.ki + 7it7, c and 71 real, (A43)

by making use of the identity

cos-'( - i 7 )= ±{ cos-s- iln(t + (A44)

where

s = 4 ({±l+ 1 72 -  /( - 1+2, (A45)

t = + ( (+1)1+7+ ( + 72 - (A46)

(i) Compute a When Only k,, Is Purely Imaginary

In this case we find

( 41)2 + 772 = (k, ± k,,) 2ik 2 , (A47)

S= Cos{I±[ 9' - sgn(k,,,)ir/2]},1 (A48)

t = Ik.1/kl, (A49)

where sgn(x) is the sign of x. Thus,

Sa, = cos -1 s = 0, - sgn(k,)7r/2, (A50)

a,=± I -k (451)

Here, the plus sign in (A48) was chosen since it gives the correct interpretation of ai, as
the angle between the real directions of propagation of the incident and scattered waves.

* The sign of a, will be determined on the individual case basis for each normal mode n
of the scattering function based on whether the mode is growing or is damped as 1k,,j
increases. Since H(k, k,, kx, ifIkzI) was defined with the signs e, = ±1 denoting the
±z direction of attenuation, the four scattering functions are always damped. Taking
into account the sign of the normal mode number n, we obtain the following results in
connection with (A42):

a, = sgn(k,,)ir/2 - 0,,

exp(ina,) = k 2 .252)

ao = 0 = b".
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Note that the sign of 7 in (A43) , which is related to the e0,,z direction of attenuation
of the incident or scattered waves, does not play a role in determining a unique solution
for aj. (This is also true if we use sin a.) Had we used the formula

-1[k kx k~l [ki ks + i j kax k, ?- 1
a = tan _e =k tan-' X I(A53)

we would have obtained the result

k 2 j
ai = iln I k , (A54)

and the natural choice of the solution would have been 0

exp(in() k )l, -k<k°,<k. (A55)exp~za,) = k,. + '/k -_ k_ _

This solution has great appeal since it depends on the direction of attenuation (e,) and 0
appears to be unique for each normal mode n. However, it must be discarded because
of its unbounded growth in one direction along the k,. axis. This peculiar behavior
results from the fact that tan a, as a function of ki, at a fixed value of k,3 = 0, has
two real singularities, k1. = ±k as seen from equation (A53). Since the solution C can
take on different character on different sides of the singularities, it is impropriate to use
formula (A53) to derive aj. 0

(ii) Compute a When Only k,, Is Purely Imaginary

In this case we obtain the same results as listed in (A47-A51) except that the subscripts
i, s are exchanged. The results are •

a, = 0. - sgn(k,,)7r/2,

exp(ina,) = ( ) (56)( k.. j + Vl/k , k k2 '(A6

ao = o=bo. 0
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(iii) Compute a When Both ki, And k,. Are Purely Imaginary
0

In this case we have

I-±1I = sgn(ko.k.,)( l 1), (A57)

s = sgn(k..ki.), (A58)

t = sgn(k..k,.)(/k2 k2v z-k2) (A59)

After some algebra we obtain

a, = sgn(k 5 )7r/2 - sgn(k1 _)7r/2,

• exp(inai) = ( k 2) + - Inj (A60)
, k2 - k2 kk,.l + k_'1(O

a0 = o = b0 .

In the following we will apply the above results to an infinite cylinder, an infinite
conducting plane, and an infinite conducting surface.

Scattering Function of an Infinite Cylinder

An infinitely long cylinder of radius a and refractive index m is assumed to lie along
the y axis. The incident propagation vector ki is assumed to be normal to the cylinder

* axis (kiy = 0). We will consider two cases of polarization separately and make use of
the results given in Chapter 8 of Bohren et al.

(i) Axial Polarization: For incident waves polarized along the cylinder axis we have the
following results:

* EIl(r) = a.E, exp(iki.r) = aE, exp(ikr cos a), (A61)

Ejj(r) --- a -Ei exp{i(kr-37r/4)} w cnexp(ina), r--oc, (A62)

1= --oo

n = C-n J(mka)J'(ka)- mJ,'(mka)Jn(ka) > 0, (A63)
J,(mka)H(')'(ka) - mJ'n(mka)H 1)(ka)'

where a = 0, - 0, is the angle of k, from k,, J,, is the Bessel function of order n, and
Hn is the Hankel function of the first kind of order n. Since the scattering function is
produced by a unit-amplitude incident plane wave. we set E, to unity and identify

&(k,..).H(k.,, k,).a, = a,, Hl;(k,. k, (.4I 64)
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where, for real values of kz and k0 ,,,

00 
00

HII(k.,k.) = 4ik-2 1 c,exp(ina) = 4icok- 2 + 8ik- 2 1 cncos(na). (A65)
f=-o n=1

Since cn does not depend on k,. or k,,, we can analytically continue only a to imaginary
values of k,, or k,, and set co to zero to obtain

00
HII(k 8 , k,) = 8ik- 2 1 cn exp(ina,) cos(ina,) (A66)

n= 1

where a, and exp(ina,) are given by (A52) if only k,, is purely imaginary, (A56) if only
k°, is purely imaginary, or (A60) if both k,. and k,, are purely imaginary.

(ii) Transverse Polarization: The incident wave is assumed to be polarized perpendic-
ular to the cylinaer axis,

E,±(r) = aE, exp(ik,.r) = aE, exp(ikr cos a), (A67)

where a, = ay x k,/k = a8, is a unit vector pointing in the direction of increasing 6,.
The results are summarized as follows:

E,±(r) -. ao E, ; exp{i(kr - 7r/4)} dnexp(ina), r -- oo (A68)

mJn(mka)Jn'(ka) - Jn(mka)Jn(ka) n

mJn(mka)H 1)'(ka) - Jn(mka)Hn()(ka) >

_(k.).__(k(k,.),k(k,.)).a,(k(k,.)) = a.(k(k..)) H±(k(k,.),k(k..)) (A70)

a,(k(k,=)) = ay x k(k,=)/k (A71)

a,(k(k,,)) = ay x k(k,,)/k (A72)

where H1 is given by the same expressions as (A65, A66) with c, replaced by d.

Note that the unit vector a, or a8 in (A67, A68) characterizes the direction of the
total incident or scattered wave at a point r. However, the unit vector a,(k(k,)) or
a,(k(k,8 :)) in (A70) is the direction of each Fourier component of the incident or scat-
tered wave. These vectors depend strictly on the propagation vector of each Fourier
component and are defined by equations (.471. .472) for real- or complex-valued \-ec-
tors k,,,. When Ik,., > k, the unit vectors become complex and the corresponding
evanescent Fourier components become elliptically polarized.
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It is important to point out that the cylinder is azimuthally (0) symmetric and
thus the scattering function H is expected to be even in k,. for the case k, = ±azk.
Our above results are consistent with this expectation and confirm that the solution
unbounded in one direction of k,, derived from tan a is incorrect.

Scattering Function of an Infinite Conducting Plane

Consider a horizontal, infinite conducting plane located at the origin with its normal
directed along the z direction. The incident wave is assumed to be propagating from
above the surface. Since the tangential component of the total wave field must vanish
on the conducting surface, we can obtain the following solution:

0 Ei(r) = aiE exp(ik1.r)= aiEexp{i(K1 .p + k1,z)} (A73)

E () (-apa + aa,).aiEexp{i(K1 .p - ki=z)} above surface
r -E(r) below surface

(Recall that the scattered wave is defined as E, - Etot.1 - Ei.) Thus the total wave
* below the surface is identically zero as expected. Note that the above solution is valid

in both two and three dimensions.

The scattering function can be immediately found by taking the two-dimensional
Fourier transform of the above equations and setting E, to unity. The two backward
scattering functions are defined by the solution above the surface as

+ .+-(K,,K,) = ,-. +K K 8= 
8 r2g(K)8(K, - K,)(I - 2aza,), (A75)t¢ ik

while the two forward scattering functions are determined by the solution below the
surface:

* ,+ .H++(K,,K,) = -.H-(K,,K,) - 87r2g(K)6(K, - K , )I. (A76)
ik

Scattering Function of an Infinite Conducting Surface

For simplicity let us confine ourselves to the case where the surface height varies only in
the x direction. Let z = f(x) be the surface height variation about the z = 0 reference
level. Since electromagnetic waves cannot penetrate a perfectly conducting surface. we
assume that the incident wave is propagating toward the surface from above only. hence
only the two scattering functions 4- - and H-- are meaningful.
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Consider an arbitrary downgoing incident electromagnetic wave which is linearly
polarized parallel to the surface (parallel polarization),

Eill(r) = ayE,-(r), (A 77)

or parallel to the plane of incidence (vertical polarization):

Ei±(r) = a1E,-(r), (A78)

a, = ay x ki/k. (A79)

The complete solution of the scattered waves for this general problem has been given
in our recent report [1]. For our purposes it suffices to summarize the results therein as
follows.

(i) Horizontal Polarization: The two-dimensional spectra of the upgoing (+) and down-
coming (-) traveling scattered waves are given by

I -ixp Zkg (k,.) f(x')}I
Ei+(kf ) p g- Jf(x'e)} exp(-ik,,x')dx', (A80)

2 J X g(k..)

Ev(ko) = E (A81)

where J,,(x) is the effective surface current satisfying the integral equation

!Efj('\X() exp{ikg(k.)f(x')} exp(-ikx')d'.(

- (kX) = 2 JI X g(k.) xp Ik,'d.(A2

By choosing a unit amplitude incident plane wave, E,(r) = cxp(ik,.r), we cail identify
the two scattering functions

PC+(k.).I+-(k.,k,=).ay = aYgH++(k,., k1.), (A83)

i-(k,,).JH--(k,=,k,=).a = aH,,-(k.., k,.), (A84)

where

H++(k 5., kx) -2g(k ,) (k.,), (A85)

II~az11J 4 ik2iiASX) =6(kik,- k,1 ). (A86)

('ii) Vertical Polarization: The results can be summarized in our notation as follows:

E,(k,,,) = a ,(,,,)E,,( ) (.A87)

a,,,(k, .,,) = ay , .(k , .,. )/k (.488)
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where

R + (k,.) J. x') q(k...)-k-
2 k dx' J

xexp{-zkg(k,.)f(x') - ik,,x'} dx', (A89)
g( k..)

*,S(ksx) = -E,(ksx), (A90)

!J J(=')[g(kj.) + k,. df(XI)exp{ikg(k,.)f(x') - ik,.x'}dI (A91)1 2 k d 7' g(k,x)

Thus we can infer the scattering function for this case as

*+(ks).f_+-(k,,xk,).a,(k,.) = a.(k,.)H++(kx,k,.), (A92)

K-(kx).H.--(k, ,k 1 ).a,(k1 x) = a,(kx)H-(k,., k1 ), (A93)

where

H++(ksx,kx) = 2g(k) +(kx), (.494)*ik 4L z( k,

H-(kx,,k,.) = 2g(k) E-(k:) - 47rg(k ,.) - kx). (495)
ik k

Conclusion0

In conclusion, we have derived the expression for the scattering function in terms
of the far-field behvior or the two-dimensional spectrum of the -. attered waves for a
single object located at the origin. This result can generally be analytically continued
to imaginary values of the k, component of the incident and the scattered waves under

* the assumption that the scattering function is bounded.

•7 7)
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